如图所示,一电荷量q=3×10-4C带正电的小球,用绝缘细线悬于竖直放置足够大的平行金属板中的O点.S合上后,小球静止时,细线与竖直方向的夹角α=37°.已知两板相距d="0.1" m,电源电动势E=12V,内阻r=2Ω,电阻R1=4Ω,R2=R3=R4=12Ω.g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)流过电源的电流;(2)两板间的电场强度的大小;(3)小球的质量.
小球A和B的质量分别为mA和mB,且mA>mB.在某高处将A和B先后从静止释放.小球A与水平地面碰撞后向上弹回,在释放处下方与释放处距离为H的地方恰好与正在下落的小球B发生正碰.设所有碰撞都是弹性的,碰撞时间极短.求小球A、B碰撞后B上升的最大高度.
如图所示,质量为m的物体从倾角为θ的斜面上的A点以速度v0沿斜面上滑,由于μmgcosθ<mgsinθ,所以它滑到最高点后又滑下来,当它下滑到B点时,速度大小恰好也是v0,设物体与斜面间的动摩擦因数为μ,求AB间的距离.
“神舟”六号载人飞船在空中环绕地球做匀速圆周运动,某次经过赤道的正上空P点时,对应的经线为西经157.5°线,飞船绕地球转一圈后,又经过赤道的正上空P点,此时对应的经线为经度180°.已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T0. (1)求载人飞船的运动周期; (2)求飞船运行的圆周轨道离地面高度h的表达式.(用T0、g和R表示).
质量为M="2.5" kg的一只长方体形铁箱在水平拉力F作用下沿水平面向右做匀加速运动,铁箱与水平面间的动摩擦因数为=0.50.这时铁箱内一个质量为m="0.5" kg的木块恰好能静止在后壁上(如图所示),木块与铁箱内壁间的动摩擦因数为=0.25,设最大静摩擦力等于滑动摩擦力,取g="10" m/s2. 求:(1)木块对铁箱的压力; (2)水平拉力F的大小.
如图,板长为L、间距为d的平行金属板水平放置,两板间所加电压大小为U,足够大光屏PQ与板的右端相距为a,且与板垂直。一带正电的粒子以初速度0沿两板间的中心线射入,射出电场时粒子速度的偏转角为37°。已知sin37°=0.6,cos37°=0.8,不计粒子的重力。 ⑴求粒子的比荷q/m; ⑵若在两板右侧MN、光屏PQ间加如图所示的匀强磁场,要使粒子不打在光屏上,求磁场的磁感应强度大小B的取值范围; ⑶若在两板右侧MN、光屏PQ间仅加电场强度大小为E0、方向垂直纸面向外的匀强电场。设初速度方向所在的直线与光屏交点为O点,取O点为坐标原点,水平向右为x正方向,垂直纸面向外为z轴的正方向,建立如图所示的坐标系,求粒子打在光屏上的坐标(x,y,z)。