宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为;另一种形式是有三颗星位于边长为a的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比.
如图所示,在平静的水面上有A、B两艘小船,A船的左侧是岸,在B船上站着一个人,人与B船的总质量是A船的10倍。两船开始时都处于静止状态,当人把A船以相对于地面的速度v向左推出,A船到达岸边时岸上的人马上以原速率将A船推回,B船上的人接到A船后,再次把它以原速率反向推出……,直到B船上的人不能再接到A船,试求B船上的人推船的次数。
如图所示,MNPQ是一块截面为正方形的玻璃砖,其边长MN="30" cm。一束激光AB射到玻璃砖的MQ面上(入射点为B)进入玻璃砖后在QP面上的F点(图中未画出)发生全反射,恰沿DC方向射出。其中B为MQ的中点,∠ABM=30°,PD=7.5 cm,∠CDN=30°。①画出激光束在玻璃砖内的光路示意图,求出QP面上的反射点F到Q点的距离QF;②求出该玻璃砖的折射率。③求出激光束在玻璃砖内的传播速度(真空中光速c=3×108m/s)。
如图所示,在一端封闭的U形管中用水银柱封一段空气柱L,当空气柱的温度为14℃时,左臂水银柱的长度h1=10cm,右臂水银柱长度h2=7cm,气柱长度L=15cm;将U形管放入100℃水中且状态稳定时,h1变为7cm。分别写出空气柱在初末两个状态的气体参量,并求出末状态空气柱的压强和当时的大气压强(单位用cmHg)。
如图所示,在直角坐标系xOy平面内有一矩形区域MNPQ,矩形区域内有水平向右的匀强电场,场强为E;在y0的区域内有垂直于坐标平面向里的匀强磁场,半径为R的光滑绝缘空心半圆管ADO固定在坐标平面内,半圆管的一半处于电场中,圆心O1为MN的中点,直径AO垂直于水平虚线MN,一质量为m、电荷量为q的带电粒子(重力不计)从半圆管的O点由静止释放,进入管内后从A点穿出恰能在磁场中做半径为R的匀速圆周运动,当粒子再次进入矩形区域MNPQ时立即撤去磁场,此后粒子恰好从QP的中点C离开电场。求(1)匀强磁场的磁感应强度B的大小;(2)矩形区域的长度MN和宽度MQ应满足的条件?(3)粒子从A点运动到C点的时间。
一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB的底端等高对接,如图所示。已知小车质量M=3.0kg,长L=2.06m,圆弧轨道半径R=0.8m。现将一质量m=1.0kg的小滑块,由轨道顶端A点无初速释放,滑块滑到B端后冲上小车。滑块与小车上表面间的动摩擦因数。(取g=10m/s2)试求:(1)滑块到达B端时,轨道对它支持力的大小;(2)小车运动1.5s时,车右端距轨道B端的距离;(3)滑块与车面间由于摩擦而产生的内能。