如图,MNP为竖直面内一固定轨道,其圆弧段MN与水平段NP相切于N,P端固定一竖直挡板。M相对于N的高度为h,NP长度为s。一木块自M端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞后停止在水平轨道上某处。若在MN段的摩擦可忽略不计,物块与NP段轨道间的滑动摩擦因数为μ,求物块停止的地方与N点距离的可能值。
如图16所示,两光滑轨道相距L=0.5m,固定在倾角为的斜面上,轨道下端连入阻值为R=4Ω的定值电阻,整个轨道处在竖直向上的匀强磁场中,磁感应强度B=1T,一质量m=0.1㎏的金属棒MN从轨道顶端由静止释放,沿轨道下滑,金属棒沿轨道下滑x=30m后恰达到最大速度(轨道足够长),在该过程中,始终能保持与轨道良好接触。(轨道及金属棒的电阻不计)(1)金属棒下滑过程中,M、N哪端电势高.(2)求金属棒下滑过程中的最大速度v.(3)求该过程中回路中产生的焦耳热Q.
如图所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于xoy平面向外,大小为B,沿x轴放置一个垂直于xoy平面的较大的荧光屏,P点位于荧光屏上,在y轴上的A点放置一放射源,可以不断地以平面内的不同方向以大小不等的速度放射出质量为m,电荷量为+q的同种粒子,这些粒子打到荧光屏上,能在屏上形成一条亮线,P点处在亮线上,已知OA=OP=L.求:(1)若能打到P点,则粒子速度的最小值为多少?(2)若能打到P点,则粒子在磁场中运动的最长时间为多少?
如图所示,处于光滑水平面上的矩形线圈边长分别为L1和L2,电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。将线圈以向右的速度v匀速拉出磁场的过程。求:(1)拉力大小F;(2)拉力的功率P;(3)拉力做的功W;(4)线圈中产生的电热Q;(5)通过线圈某一截面的电荷量q。
如图所示,质量为m的导体棒MN静止在水平导轨上,导轨宽度为L,已知电源的电动势为E,内阻为r,导体棒的电阻为R,其余部分及接触电阻不计,匀强磁场方向垂直导体棒斜向上与水平面的夹角为θ,磁感应强度为B,求轨道对导体棒的支持力和摩擦力。
(14分)如图所示,固定在水平面上的斜面与水平面的连接处为一极小的光滑圆弧(物块经过Q点时不损失机械能),斜面与地面是用同种材料制成的。斜面的最高点为P,P距离水平面的高度为h=5m。在P点先后由静止释放两个可视为质点的小物块A和B,A、B的质量均为m=1kg,A与斜面及水平面的动摩擦因数为μ1=0.5,B与斜面及水平面的动摩擦因数为μ2=0.3。A物块从P点由静止释放后沿斜面滑下,停在了水平面上的某处。求:(1)A物块停止运动的位置距离斜面的直角顶端O点的距离是多少?(2)当A物块停止运动后准备再释放B物块时发现它们可能会发生碰撞,为了避免AB碰撞,此时对A另外施加了一个水平向右的外力F,把A物体推到了安全的位置,之后再释放B就避免了AB碰撞。求外力F至少要做多少功,可使AB不相撞?(g取10m/s2,此问结果保留三位有效数字)