如图所示,质量M="8" kg的小车放在水平光滑的平面上,在小车左端加一水平推力F="8" N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m="2" kg的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求(1)小物块放后,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?(3)从小物块放上小车开始,经过t="1.5" s小物块通过的位移大小为多少?(取g="l0" m/s2).
如图所示,圆柱形气缸开口向上竖直放置在水平面上,气缸足够长,内截曲积为S,大气压强为P0,一厚度不计、质量为的活塞封住一定量的理想气体,温度为T0时缸内气体体积为V0 ,先在活塞上缓慢放上质量为3m的砂子,然后将缸内气体温度缓慢升高到2T0,求:①最后缸内气体的体积;②在右图中_出缸内气体状态变化的p-V图象
如图所示,M、N为加速电场的两极板,M板中心有一小孔Q,其正上方有一半径为R1=1m的圆形磁场区域,圆心为0,另有一内半径为R1 ,外半径为m的同心环形磁场区域,区域边界与M板相切于Q点,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面。一比荷C/kg带正电粒子从N板的P点由静止释放,经加速后通过小孔Q,垂直进入环形磁场区域。已知点P、Q、O在同一竖直线上,不计粒子的重力,且不考虑粒子的相对论效应。(1) 若加速电压V,求粒子刚进入环形磁场时的速率v0(2)要使粒子能进入中间的圆形磁场区域,加速电压U2应满足什么条件?(3) 在某加速电压下粒子进入圆形磁场区域,恰能水平通过圆心O,之后返回到出发点P,求粒子从Q孔进人磁场到第一次回到Q点所用的时间。
如图所示,倾角为37°的斜面固定在水平地面上,质量m=1kg的物体在平行于斜面向上的恒力F作用下,从A点由静止开始运动,到达B点时立即撤去拉力F,此后,物体到达C点时速度为零。通过速度传感器测得这一过程中物体每隔0.2s的瞬时速度,下表给出了部分数据()。求:(1)物体与斜面间的动摩擦因数;(2) 恒力F的大小;(3) AC间的距离。
如图所示,固定的半圆形绝缘光滑轨道置于正交的匀强电场和匀强磁场叠加的区域中。轨道半径为R,磁感应强度为B,方向垂直于纸面向外,电场强度为E,方向水平向左。(1)一个质量为m的小球(可视为质点)放在轨道上的C点恰好处于静止,圆弧半径OC与水平直径AD的夹角为α(sinα=0.8,cosα=0.6)。求小球所电荷量;试说明小球带何种电荷并陈述理由。(2)如果将小球从A点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力是多少?(3) 若将小球从A点由静止释放,小球沿圆弧轨道运动到最低点时,与另一个质量也为m且静止在O点正下方P点的不带电小球(可视为质点)发生碰撞,设碰撞过程历时可以忽略且无机械能损失也无电荷转移。两小球在运动过程中始终没有脱离圆弧轨道。求第一次碰撞后到第二次碰撞前,两小球在圆弧轨道上上升的最大高度各是多少?
如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧。两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动通过轨道最高点时对轨道的压力大小恰等于其所受重力的大小。已知圆形轨道的半径R=0.60m,滑块A的质量mA=0.16kg,滑块B的质量mB=0.04kg,两滑块开始下滑时距圆形轨道底端的高度h=0.80m,重力加速度g取10m/s2,空气阻力可忽略不计。求:(1)A、B两滑块一起运动到圆形轨道最低点时速度的大小;(2)滑块A被弹簧弹开时的速度大小;(3)弹簧在将两滑块弹开的过程中释放的弹性势能。