宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为,万有引力常量为。(1)试求第一种形式下,星体运动的线速度和周期。(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?
如图所示,遥控电动赛车(可视为质点)从A点由静止出发,经过时间t后关闭电动机,赛车继续前进至B点后水平飞出,垂直地撞到倾角为θ=53°的斜面上C点.已知赛车在水平轨道AB部分运动时受到恒定阻力f=0.4N,赛车的质量m=0.4kg,通电后赛车的电动机以额定功率P=2W工作,轨道AB的长度L=2m,B、C两点的水平距离S=1.2m,空气阻力忽略不计.g取10m/s2,sin53°=0.8,cos53°=0.6.求: (1)赛车运动到C点时速度υC的大小; (2)赛车电动机工作的时间t.
如图所示,质量为m的小球自由下落d后,沿竖直面内的固定轨道ABC运动,AB是半径为d的光滑圆弧,BC是直径为d的粗糙半圆弧(B是轨道的最低点)。小球恰好能运动到C点.求: (1)小球运动到B处时对轨道的压力大小; (2)小球在BC上运动过程中,摩擦力对小球做的功。(重力加速度为g)
冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图。比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近圆心O.为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小。设冰壶与冰面间的动摩擦因数为=0.008,用毛刷擦冰面后动摩擦因数减少至=0.004.在某次比赛中,运动员使冰壶C在投掷线中点处以2m/s的速度沿虚线滑出。为使冰壶C能够沿虚线恰好到达圆心O点,运动员用毛刷擦冰面的长度应为多少?(g取10m/s2)
如图所示,一根原长L=0.1m的轻弹簧,一端挂质量m=0.5kg的小球,以另一端为圆心在光滑的水平面上做匀速圆周运动。已知弹簧的劲度系数k=100N/m,能产生的最大弹力为F=10N.求小球运动的最大角速度的大小.
如图所示,两平行的、间距为d的光滑金属导轨b1b2b3b4、c1c2c3c4分别固定在竖直平面内,整个导轨平滑连接,b2b3、c2c3位于同一水平面(规定该水平面的重力势能为零),其间有一边界为b2b3c3c2、方向竖直向上的匀强磁场,磁感应强度大小为B,导轨两端均连有电阻为R的白炽灯泡。一长为d的金属杆PN与两导轨接触良好,其质量为m、电阻为。若金属杆从导轨左侧某一位置开始以初速度v0滑下,通过磁场区域后,再沿导轨右侧上滑至其初始位置高度一半时速度恰为零,此后金属杆做往复运动。金属杆第一次通过磁场区域的过程中,每个灯泡产生的热量为Q,重力加速度为g,除金属杆和灯泡外其余部分的电阻不计。求: (1)金属杆第一次通过磁场区域的过程中损失的机械能; (2)金属杆初始位置的高度; (3)金属杆第一次刚进入磁场区域时加速度的大小。