一弹簧一端固定在倾角为370光滑斜面的底端,另一端拴住的质量m1=4kg的物块P,Q为一重物,已知Q的质量m2=8kg,弹簧的质量不计,劲度系数k=600N/m,系统处于静止,如右图所示。现给Q施加一个方向沿斜面向上的力F,使它从静止开始斜向上做匀加速运动,已知在前0.2s时间内,F为变力,0.2s以后,F为恒力。求力F的最大值与最小值。(g=10m/s2)
一带电粒子无初速度的进入一加速电场A,然后垂直进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),如图所示。已知加速电场A板间电压为U1,M、N两板间的电压为U2,两板间的距离为d,板长为L,粒子的质量为m,电荷量为q,不计粒子受到的重力及它们之间的相互作用力。求:(1)粒子穿过A板时速度大小v0;(2)粒子从偏转电场射出时的侧移量y;(3)粒子从偏转电场射出时速度的偏转角q。
如图所示,电源的总功率为40W,电阻,,电源内阻,电源的输出功率为。求:(1)电源的内电路功率和电路中的总电流;(2)电源的电动势;(3)的阻值。
如图,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好。轨道和导体棒的电阻均不计。 (1)如图1,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻。闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到稳定最大速度vm,求此时电源的输出功率。 (2)如图2,若轨道左端接一电容器,电容器的电容为C,导体棒在水平恒定拉力的作用下从静止(t=0)开始向右运动。电容器两极板电势差随时间变化的图象如图3所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。
如图所示的坐标系,在y轴左侧有垂直纸面、磁感应强度为B的匀强磁场。在x=L处,有一个与x轴垂直放置的屏,y轴与屏之间有与y轴平行的匀强电场。在坐标原点O处同时释放两个均带正电荷的粒子A和B,粒子A的速度方向沿着x轴负方向,粒子B的速度方向沿着x轴正方向。已知粒子A的质量为m,带电量为q,粒子B的质量是n1m,带电量为n2q(n1、n2均为正整数),释放瞬间两个粒子的速率满足关系式。若已测得粒子A在磁场中运动的半径为r,粒子B击中屏的位置到x轴的距离也等于r。粒子A和粒子B的重力均不计。(1)若r、m、q、B已知,求vA。(2)求粒子A和粒子B打在屏上的位置之间的距离(结果用r、n1、n2表示)。
如图所示,K与虚线MN之间是加速电场,虚线MN与PQ之间是匀强电场,虚线PQ与荧光屏之间是匀强磁场,且MN、PQ与荧光屏三者互相平行,电场和磁场的方向如图所示,图中A点与O点的连线垂直于荧光屏。一带正电的粒子从A点离开加速电场,速度方向垂直于偏转电场方向射入偏转电场,在离开偏转电场后进入匀强磁场,最后恰好垂直地打在荧光屏上。已知电场和磁场区域在竖直方向足够长,加速电场电压与偏转电场的场强关系为U=Ed,式中的d是偏转电场的宽度,磁场的磁感应强度B与偏转电场的电场强度E和带电粒子离开加速电场的速度v0关系符合表达式v0=。若题中只有偏转电场的宽度d为已知量。(1)画出带电粒子轨迹示意图。(2)磁场的宽度L为多少?(3)带电粒子在电场和磁场中垂直于v0方向的偏转距离分别是多少?