.(本小题满分14分)设实数、同时满足条件:,且,(1)求函数的解析式和定义域;(2)判断函数的奇偶性;(3)若方程恰有两个不同的实数根,求的取值范围
(本小题满分15分)已知椭圆的离心率为,其左焦点到点的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)过右焦点的直线与椭圆交于不同的两点、,则内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
(本小题满分15分)如图,在直三棱柱中,平面 侧面且. (Ⅰ)求证:; (Ⅱ)若直线AC与平面所成的角为,求锐二面角的大小.
(本小题满分15分)设数列为等差数列,且;数列的前项和为.(Ⅰ)求数列,的通项公式;(Ⅱ)若为数列的前项和,求.
(本小题满分15分)已知,且,设,的图象相邻两对称轴之间的距离等于.(Ⅰ)求函数的解析式;(Ⅱ)在△ABC中,分别为角的对边,,,求面积的最大值.
(本小题满分14分)已知函数.(Ⅰ)若函数的图象在处的切线斜率为,求实数的值;(Ⅱ)在(Ⅰ)的条件下,求函数的单调区间;(Ⅲ)若函数在上是减函数,求实数的取值范围.