设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示。为了安全,返回舱与轨道舱对接时,必须具有相同的速度。已知返回舱返回过程中需克服火星的引力做功,返回舱与人的总质量为m,火星表面的重力加速度为g,火星的半径为R,轨道舱到火星中心的距离为r,不计火星表面大气对返回舱的阻力和火星自转的影响,则该宇航员乘坐的返回舱至少需要获得多少能量才能返回轨道舱?
(10分)如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场。带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。忽略重力的影响,求: (1)匀强电场场强E的大小; (2)粒子从电场射出时速度ν的大小; (3)粒子在磁场中做匀速圆周运动的半径R。
长为L的绳一端系于O点,另一端系一质量为3m的小球,如图所示,质量为m的子弹水平射入小球并留在其内,小球恰好能过最高处(O点上方L处),求子弹的初速度.
(6分) 质量为5.0kg的物体,从离地面36m高处,由静止开始加速下落,经3s落地,试求: ①物体下落的加速度的大小; ②下落过程中物体所受阻力的大小。(g取10m/s2)
如图所示,位于竖直平面上的圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为,最后落在地面上C点处,不计空气阻力. 求:(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大. (2)小球落地点C与B点水平距离为多少.
地球绕太阳公转的角速度为ω1,轨道半径为R1,月球绕地球公转的角速度为ω2,轨道半径为R2,那么太阳的质量是地球质量的多少倍.