如图,质量为10 kg的物体在沿斜面向上的推力F的作用下,从粗糙斜面的底端由静止开始沿斜面运动,已知F="200" N,物体与斜面间的动摩擦因数μ=0.25。斜面与水平地面的夹角θ=37º。力F作用2s后撤去,斜面足够长。取g=10m/s2,且sin37º=0.6,cos37º=0.8。求: (1)物体向上加速运动时的加速度; (2)物体由静止开始向上运动,经多长时间到达最高点; (3)物体返回斜面底端的动能。
1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于真空中的两个D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直. 设两D形盒之间所加的交流电压为U,被加速的粒子质量为m、电量为q,粒子从D形盒一侧开始被加速(初动能可以忽略),经若干次加速后粒子从D形盒边缘射出.求:(1)粒子从静止开始第1次经过两D形盒间狭缝加速后的速度大小 (2)粒子第一次进入D型盒磁场中做圆周运动的轨道半径 (3)粒子至少经过多少次加速才能从回旋加速器D形盒射出
如下图所示,光滑水平面MN左端挡板处有一弹射装置P,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度L=8m,皮带轮逆时针转动带动传送带以v = 2m/s的速度匀速转动。MN上放置两个质量都为m =" 1" kg的小物块A、B,它们与传送带间的动摩擦因数μ = 0.4。开始时A、B静止,A、B间压缩一轻质弹簧,其弹性势能Ep =" 16" J。现解除锁定,弹开A、B,并迅速移走弹簧。取g=10m/s2。(1)求物块B被弹开时速度的大小;(2)求物块B在传送带上向右滑行的最远距离及返回水平面MN时的速度vB′;(3)A与P相碰后静止。当物块B返回水平面MN后,A被P弹出,A、B相碰后粘接在一起向右滑动,要使A、B连接体恰好能到达Q端,求P对A做的功。
某学习小组为了研究影响带电粒子在磁场中偏转的因素,制作了一个自动控制装置,如图所示,滑片P可在R2上滑动,在以O为圆心,半径为R=10cm的圆形区域内,有一个方向垂直纸面向外的水平匀强磁场,磁感应强度大小为B=0.10T。竖直平行放置的两金属板A、K相距为d,连接在电路中,电源电动势E=91V,内阻r=1.0Ω,定值电阻R1=10Ω,滑动变阻器R2的最大阻值为80Ω,S1、S2为A、K板上的两个小孔,且S1、S2跟O在竖直极板的同一直线上,OS2=2R,另有一水平放置的足够长的荧光屏D,O点跟荧光屏D点之间的距离为H。比荷为2.0×105C/kg的离子流由S1进入电场后,通过S2向磁场中心射去,通过磁场后落到荧光屏D上。离子进入电场的初速度、重力、离子之间的作用力均可忽略不计。问:(1)判断离子的电性,并分段描述离子自S1到荧光屏D的运动情况?(2)如果离子恰好垂直打在荧光屏上的N点,电压表的示数多大?(3)电压表的最小示数是多少?要使离子打在荧光屏N点的右侧,可以采取哪些方法?
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。(不计空气阻力)求:(1)滑块经过B点时速度的大小;(2)滑块冲到圆弧轨道最低点B时对轨道的压力;(3)滑块在圆弧轨道BC段克服摩擦力所做的功。
一同学利用手边的两个完全相同的质量为m的物块和两个完全相同、劲度系数未知的轻质弹簧,做了如下的探究活动。已知重力加速度为g,不计空气阻力。(1)取一个轻质弹簧,弹簧的下端固定在地面上,弹簧的上端与物块A连接,物块B叠放在A上,A、B处于静止状态,如图所示。若A、B粘连在一起,用一竖直向上的拉力缓慢提升B,当拉力的大小为时,A物块上升的高度为L;若A、B不粘连,用一竖直向上的恒力作用在B上,当A物块上升的高度也为L时,A、B恰好分离。求:a.弹簧的劲度系数;b.恒力的大小;(2)如图所示,将弹簧1上端与物块A拴接,下端压在桌面上(不拴接),弹簧2两端分别与物块A、B拴接,整个系统处于平衡状态。现施力将物块B缓缓地竖直上提,直到弹簧1的下端刚好脱离桌面。求在此过程中该拉力所做的功?(已知弹簧具有的弹性势能为,k为弹簧的劲度系数,Δx为弹簧的形变量)