弹簧振子以O点为平衡位置,在B、C两点间做简谐运动.在t=0时刻,振子从O、B间的P点以速度v向B点运动;在t="0.20" s时,振子速度第一次变为-v;在t="0.50" s时,振子速度第二次变为-v.(1)求弹簧振子振动的周期T;(2)若B、C之间的距离为25 cm,求振子在4.0 s内通过的路程.
如图所示,边长为L的正方形线 圈abcd的匝数为n,线圈电阻为r,外电路的电阻为R,磁感应强度为B,电压表为理想交流电压表。现在线圈以角速度ω绕垂直于磁感线的对称轴OO′匀速转动,从线圈平面与磁感线平行开始计时。试求:(1)闭合电路中电流瞬时值的表达式; (2)电压表的示数 (3)线圈从t=0开始,转过900的过程中,电阻R上通过的电荷量
如图所示为由一个原线圈n1和两个副线圈n2、n3组成的理想变压器,已知n1∶n2∶n3=4∶2∶1,电阻R=3Ω,副线圈n2接2个“6 V, 6 W”灯泡,副线圈n3接4个3 W的灯泡,所有灯泡均正常发光,求电源的输出功率.
如图所示,在xoy坐标系中分布着四个有界场区,在第三象限的AC左下方存在垂直纸面向里的匀强磁场B1=0.5T,AC是直线y=-x—0.425(单位:m)在第三象限的部分,另一沿y轴负向的匀强电场左下边界也为线段AC的一部分,右边界为y轴,上边界是满足(单位:m)的抛物线的一部分,电场强度E=2.5N/C。在第二象限有一半径为r=0.1m的圆形磁场区域,磁感应强度B2=1T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别为D、F,在第一象限的整个空间存在垂直纸面向外的匀强磁场,磁感应强度B3=1T,另有一厚度不计的挡板PQ垂直纸面放置,其下端坐标P(0.1m,0.1m),上端Q在y轴上,且∠PQF=30°现有大量m=1×10-6kg,q=-2×10-4C的粒子(重力不计)同时从A点沿x轴负向以v0射入,且v0取0<v0<20m/s=4-4d 之间的一系列连续值,并假设任一速度的粒子数占入射粒子总数的比例相同。 (1)求所有粒子从第三象限穿越x轴时的速度;(2)设从A点发出的粒子总数为N,求最终打在挡板PQ右侧的粒子数N1 。
如图所示,在磁感应强度为B=2T,方向垂直纸面向里的匀强磁场中,有一个由两条曲线状的金属导线及两电阻(图中黑点表示)组成的固定导轨,两电阻的阻值分别为R1=3Ω、R2=6Ω,两电阻的体积大小可忽略不计,两条导线的电阻忽略不计且中间用绝缘材料隔开,导轨平面与磁场垂直(位于纸面内),导轨与磁场边界(图中虚线)相切,切点为A,现有一根电阻不计、足够长的金属棒MN与磁场边界重叠,在A点对金属棒MN施加一个方向与磁场垂直、位于导轨平面内的并与磁场边界垂直的拉力F,将金属棒MN以速度v=5m/s匀速向右拉,金属棒MN与导轨接触良好,以切点为坐标原点,以F的方向为正方向建立x轴,两条导线的形状符合曲线方程m,求:(1)推导出感应电动势e的大小与金属棒的位移x的关系式.(2)整个过程中力F所做的功.(3)从A到导轨中央的过程中通过R1的电荷量.
如图所示,长L=1.5 m,高h=0.45 m,质量M=10 kg的长方体木箱,在水平面上向右做直线运动.当木箱的速度v0=3.6 m/s时,对木箱施加一个方向水平向左的恒力F=50 N,并同时将一个质量m=1 kg的小球轻放在距木箱右端的P点(小球可视为质点,放在P点时相对于地面的速度为零),经过一段时间,小球脱离木箱落到地面.木箱与地面的动摩擦因数为0.2,其他摩擦均不计.取g=10 m/s2.求: (1)小球从离开木箱开始至落到地面所用的时间; (2)小球放在P点后,木箱向右运动的最大位移; (3)小球离开木箱时木箱的速度.