在建筑工地上,我们常常看到工人用重锤将柱桩打入地下的情景。对此,我们可以建立这样一个力学模型:重锤的质量为m,从距桩顶高H处自由下落,柱桩的质量为M,重锤打击柱桩后不反弹且打击时间极短。柱桩受到地面的阻力恒为f,空气阻力忽略不计。利用这一模型,计算重锤一次打击柱桩时桩进入地下的深度h。一位同学这样解:设柱桩进入地面的深度为h,对全程运用动能定理,得: 可解得:h=……你认为该同学的解法是否正确?如果正确,请求出结果;如果不正确,请说明理由,并列式求出正确的结果。
如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m,带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°.此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向,最后电子运动一段时间后从N飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°).求: (1)电子进入圆形磁场区域时的速度大小; (2)0≤x≤L区域内匀强电场场强E的大小; (3)写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式。
如图所示,竖直平面内的圆弧形光滑轨道半径为R,A端与圆心O等高,AD为与水平方向成45°角的斜面.B端在O的正上方.一个小球在A点正上方由静止开始释放,自由下落至A点后进入圆形轨道并恰能到达B点,求: (1)释放点距A点的竖直高度; (2)小球落到斜面上C点时的速度大小
如图所示,物体A、B的质量分别是、,用轻弹簧相连接放在光滑的水平面上,物体B左侧与竖直墙相接触.另有一个质量为物体C以速度向左运动,与物体A相碰,碰后立即与A粘在一起不再分开,然后以的共同速度压缩弹簧,试求: ①物块C的初速度为多大? ②在B离开墙壁之后,弹簧的最大弹性势能。
如图所示,半径为R的扇形AOB为透明柱状介质 的横截面,圆心角∠AOB=60°.一束平行于角平分线OM的单色光由OA射入介质,折射光线平行于OB且恰好射向M(不考虑反射光线,已知光在真空中的传播速度为c)。 ①求从AMB面的出射光线与进入介质的入射光线的偏向角; ②光在介质中的传播时间。
一圆柱形气缸,质量M为10 kg,总长度L为40 cm,内有一厚度不计的活塞,质量m为5 kg,截面积S为50 cm2,活塞与气缸壁间摩擦不计,但不漏气,当外界大气压强p0为1´105 Pa,温度t0为7°C时,如果用绳子系住活塞将气缸悬挂起来,如图所示,气缸内气体柱的高L1为35 cm,g取10 m/s2.求: ①此时气缸内气体的压强; ②当温度升高到多少摄氏度时,活塞与气缸将分离。