如图所示,ABDO是固定在竖直平面内的光滑轨道,AB是半径为R="15" m的四分之一圆周轨道,半径OA处于水平位置,BDO是直径为15 m的半圆轨道,D为BDO轨道的中央.AB和BDO相切于B点.一个小球P从A点的正上方距水平半径OA高H处自由落下,沿竖直平面内的轨道通过D点时对轨道的压力大小等于其重力大小的倍.取g=10m/.(1)求高度H;(2)试讨论此球能否到达BDO轨道的最高点O;(3)求小球沿轨道运动后再次落到轨道上的速度大小.
在水平地面上有一质量为4.0kg的物体,物体在水平拉力F的作用下由静止开始运动。10s后水平拉力减为。该物体的v---t图象如图所示,求(1)物体受到的水平拉力F的大小(2)物体与地面间的动摩擦因数。(g取10m/s2)
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q="1." 0×10-3C,g取10m/s2。求:(1)小球释放点的高度h(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:①小球从P到A经历的时间②若满足条件的磁场区域为一矩形,求最小的矩形面积。
一转动装置如图甲所示,两根足够长轻杆OA、OB固定在竖直轻质转轴上的O点,两轻杆与转轴间夹角均为30°,小球a、b分别套在两杆上,小环c套在转轴上,球与环质量均为m,c与a、b间均用长为L的细线相连,原长为L的轻质弹簧套在转轴上,且与轴上P点、环c相连。当装置以某一转速转动时,弹簧伸长到,环c静止在O处,此时弹簧弹力等于环的重力,球、环间的细线刚好拉直而无张力。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g。求:(1)细线刚好拉直而无张力时,装置转动的角速度ω1(2)如图乙所示,该装置以角速度ω2(未知)匀速转动时,弹簧长为L/2,求此时杆对小球的弹力大小;(3)该装置转动的角速度由ω1缓慢变化到ω2,求该过程外界对转动装置做的功。
如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=2kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.6m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=1.2m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.1,重力加速度g取10 m/s2,求:(1)水平轨道BC长度;(2)小车不固定时物块再次与小车相对静止时距小车B点的距离;(3)两种情况下由于摩擦系统产生的热量之比.
清明节高速免费,物理何老师驾车在返城经过高速公路的一个出口路段如图所示,发现轿车从出口A进入匝道,先匀减速直线通过下坡路段至B点(通过B点前后速率不变),再匀速率通过水平圆弧路段至C点,最后从C点沿平直路段匀减速到收费口D点停下。已知轿车在出口A处的速度v0=20m/s,AB长L1=200m;BC为四分之一水平圆弧段,限速(允许通过的最大速度)v=10m/s,轮胎与BC段路面间的动摩擦因μ=0.2,最大静摩擦力可认为等于滑动摩擦力, CD段为平直路段长L2=100m,重力加速度g取l0m/s2。求:(1)若轿车到达B点速度刚好为v =10m/s,轿车在AB下坡段加速度的大小;(2)为保证行车安全,车轮不打滑,水平圆弧段BC半径R的最小值(3)轿车A点到D点全程的最短时间。(保留三位有效数字)