如图所示,坐标系xOy位于竖直平面内,在该区域内有场强E=12N/C、方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、沿水平方向且垂直于xOy平面指向纸里的匀强磁场.一个质量m=4×10kg,电量q=2.5×10C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.取g=10 m/s2,求:(1)P点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.
如图,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N。一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g)。(1)判断小球的带电性质并求出其所带电荷量;(2)P点距坐标原点O至少多高;(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间小球距坐标原点O的距离s为多远?
如图甲所示,水平加速电场的加速电压为U0,在它的右侧有由水平正对放置的平行金属板a、b构成的偏转电场,已知偏转电场的板长L="0.10" m,板间距离d=5.0×10-2m,两板间接有如图15乙所示的随时间变化的电压U,且a板电势高于b板电势。在金属板右侧存在有界的匀强磁场,磁场的左边界为与金属板右侧重合的竖直平面MN,MN右侧的磁场范围足够大,磁感应强度B=5.0×10-3T,方向与偏转电场正交向里(垂直纸面向里)。质量和电荷量都相同的带正电的粒子从静止开始经过电压U0=50V的加速电场后,连续沿两金属板间的中线OO′方向射入偏转电场中,中线OO′与磁场边界MN垂直。已知带电粒子的比荷=1.0×108C/kg,不计粒子所受的重力和粒子间的相互作用力,忽略偏转电场两板间电场的边缘效应,在每个粒子通过偏转电场区域的极短时间内,偏转电场可视作恒定不变。(1)求t=0时刻射入偏转电场的粒子在磁场边界上的入射点和出射点间的距离;(2)求粒子进入磁场时的最大速度;(3)对于所有进入磁场中的粒子,如果要增大粒子在磁场边界上的入射点和出射点间的距离,应该采取哪些措施?试从理论上推理说明。
如图所示,MN、PQ是平行金属板,板长为L两板间距离为d,在PQ板的上方有垂直纸面向里足够大的匀强磁场.一个电荷量为q,质量为m的带负电粒子以速度V0从MN板边缘且紧贴M点,沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场.不计粒子重力,求:(1)两金属板间所加电压U的大小;(2)匀强磁场的磁感应强度B的大小;(3)当该粒子再次进入电场并再次从电场中飞出时的速度及方向.
如图,POy区域内有沿y轴正方向的匀强电场,POx区域内有垂直纸面向里的匀强磁场,OP与x轴成θ角.不计重力的负电荷,质量为m、电量为q,从y轴上某点以初速度v0垂直电场方向进入,经电场偏转后垂直OP进入磁场,又垂直x轴离开磁场.求:(1)电荷进入磁场时的速度大小(2)电场力对电荷做的功(3)电场强度E与磁感应强度B的比值.
高频焊接是一种常用的焊接方法,图1是焊接的原理示意图。将半径r=0.10m的待焊接环形金属工件放在线圈中,然后在线圈中通以高频变化的电流,线圈产生垂直于工件平面的匀强磁场,磁场方向垂直线圈平面向里,磁感应强度B随时间t的变化规律如图2所示。工件非焊接部分单位长度上的电阻R0=1.0×10-3m-1,焊缝处的接触电阻为工件非焊接部分电阻的9倍。焊接的缝宽非常小,不计温度变化对电阻的影响。求:(1)0~2.010-2s和2.010-2s~3.010-2s时间内环形金属工件中感应电动势各是多大; (2)0~2.010-2s和2.010-2s~3.010-2s时间内环形金属工件中感应电流的大小,并在图3中定量画出感应电流随时间变化的i-t图象(以逆时针方向电流为正); (3)在t=0.10s内电流通过焊接处所产生的焦耳热。