由同样长16厘米的两根轻线将球A、B悬挂在C点,球B质量为100g,静止在竖直方向,把球A拉离平衡位置,竖直高度差h=10cm后放手。在球A、B碰撞后球A以碰撞前的速率的一半继续前进,球B碰撞后作圆周运动,到达最高点时线对它的拉力恰好为零,求球A的质量应为多少?
如图,在半径R=0.1m的水平圆板中心轴正上方高h=0.8m处以v0=3m/s的速度水平抛出一球,圆板做匀速转动。当圆板半径OB转到图示位置时,小球开始抛出。要使球与圆板只碰一次,且落点为B,求:(1) 小球击中B点时的速度大小;(2)若小球在空中运动的时间为0.4s,圆板转动的角速度ω为多少?
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M太。(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M地。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)
如图所示,一质量为m=10kg的物体,由1/4圆弧轨道上端从静止开始下滑,到达底端时的速度v=2m/s,然后沿水平面向右滑动1m距离后停止.已知轨道半径R=0.4m,g=10m/s2则: (1)物体沿轨道下滑过程中克服摩擦力做多少功? (2)物体与水平面间的动摩擦因数μ是多少?
如图所示,半径为的光滑圆形轨道竖直固定放置,质量为的小球在圆形轨道内侧做圆周运动.小球通过轨道最高点时恰好与轨道间没有相互作用力.已知当地的重力加速度大小为,不计空气阻力.
试求:(1)小球通过轨道最高点时速度的大小;(2)小球通过轨道最低点时角速度的大小;(3)小球通过轨道最低点时受到轨道支持力的大小.
已知地球的半径为R,地球表面的重力加速度大小为g,万有引力常量为G,不考虑地球自转的影响.试求:(1)卫星环绕地球运行的第一宇宙速度的大小;(2)若卫星绕地球做匀速圆周运动且运行周期为T,求卫星运行的轨道半径r;(3)由题干所给条件,推导出地球平均密度的表达式.