为了研究太阳演化进程,需知道目前太阳的质量M。已知地球半径,地球质量,日地中心距离,地球表面处的重力加速度,地球绕太阳一周所用的时间1年约为,试估算目前太阳的质量M(保留一位有效数字,引力常量未知)
质量为m=1kg的物体以初速V0=12m/s竖直上抛,空气阻力大小为其重力的0.2倍,g取10m/s2,求:(1)该物体上升和下降时的加速度之比;(2)求整个过程中物体克服阻力做功的平均功率P1和物体落回抛出点时重力的瞬时功率P2。
为确保弯道行车安全,汽车进入弯道前必须减速.如图所示,AB为进入弯道前的平直公路,BC为水平圆弧形弯道.已知AB段的距离,弯道半径R=24m.汽车到达A点时速度,汽车与路面间的动摩擦因数,设最大静摩擦力等于滑动摩擦力,取g=l0m/s2.要确保汽车进入弯道后不侧滑.求汽车(1)在弯道上行驶的最大速度;(2)在AB段做匀减速运动的最小加速度.
一列简谐横波,如图中的实线是某时刻的波形图象,虚线是经过0.2s时的波形图像(1)若这列波向右传播,求波速?(2)假定波速是35m/s,若有一质点P、其平衡位置的坐标是x=0.5m,从实线对应的时刻开始计时,求经过多长时间可以到达平衡位置?
如图所示,三角形ABC为某透明介质的横截面,O为BC边的中点,位于截面所在平面内的一束光线自O以角度i入射,第一次到达AB边恰好发生全反射。已知,BC边长为2L,该介质的折射率为。求:(i)入射角i(ii)从入射到发生第一次全反射所用的时间(设光在真空中的速度为c,可能用到: 或)。
直径d=1.00m,高H=0.50m的不透明圆桶,放在水平地面上,桶内盛有折射率n=1.60的透明液体,某人站在地面离桶右侧的距离为x=1.60m处,他的眼睛到地面的距离y=1.70m。问桶中液面高h为多少时,他能看到桶底中心(桶壁厚度忽略不计、不考虑桶壁反射情况、计算结果可以用根式表示)。