如图所示,竖直放置的圆弧轨道和水平轨道两部分相连. 水平轨道的右侧有一质量为 2 m的滑块C 与轻质弹簧的一端相连,弹簧的另一端固定在竖直的墙M上,弹簧处于原长时,滑块C静止在P 点处;在水平轨道上方O 处,用长为L 的细线悬挂一质量为 m 的小球B,B 球恰好与水平轨道相切,并可绕O点在竖直平面内摆动。质量为 m 的滑块A 由圆弧轨道上静止释放,进入水平轨道与小球B发生碰撞,A、B 碰撞前后速度发生交换. P 点左方的轨道光滑、右方粗糙,滑块A、C 与PM 段的动摩擦因数均为=0.5,A、B、C 均可视为质点,重力加速度为g.
(1)求滑块A 从2L高度处由静止开始下滑, 与B碰后瞬间B的速度.
(2)若滑块A 能以与球B 碰前瞬间相同的速度与滑块C 相碰,A 至少要从距水平轨道多高的地方开始释放?
(3)在(2)中算出的最小值高度处由静止释放A,经一段时间A 与C 相碰,设碰撞时间极短,碰后一起压缩弹簧,弹簧最大压缩量为L,求弹簧的最大弹性势能。