如图所示,宽L=1m、高h=7.2m、质量M=8kg的上表面光滑的木板在水平地面上运动,木板与地面间的动摩擦因数μ=0.2。当木板的速度为vo=3m/s时,把一质量m=2kg的光滑小铁块(可视为质点)无初速轻放在木板上表面的右端,取g=10m/s2。求:(1)小铁块与木板脱离时木板的速度v1的大小(2)小铁块刚着地时与木板左端的水平距离s
(16分)一轻质细绳一端系一质量为m=0.05kg的小球A,另一端挂在O点,O到小球的距离为L=0.1m,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平距离s=2m.现有一滑块B,质量也为m,从斜面上滑下,与小球发生碰撞,每次碰后,滑块与小球速度均互换,已知滑块与挡板碰撞时不损失机械能,水平面与滑块间的动摩擦因数为μ=0.25,若不计空气阻力,并将滑块和小球都视为质点,g取10m/s2.试问: ⑴若滑块B从斜面某一高度h处滑下与小球第一次碰撞后,使小球恰好在竖直平面内做圆周运动,求此高度h; ⑵若滑块B从h′=5m处下滑与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数.
(13分)如图所示为宇宙中一恒星系的示意图,A为该星系的一颗行星,它绕中央恒星O的运行轨道近似为圆.已知引力常量为G,天文学家观测得到A行星的运行轨道半径为R0,周期为T0.A行星的半径为r0,其表面的重力加速度为g,不考虑行星的自转. ⑴中央恒星O的质量是多大? ⑵若A行星有一颗距离其表面为h做圆周运动的卫星,求该卫星的线速度大小。(忽略恒星对卫星的影响)
(13分)如图所示的装置叫做阿特伍德机,是阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律.绳子两端的物体下落(上升)的加速度总是小于自由落体的加速度g,同自由落体相比,下落相同的高度,所花费的时间要长,这使得实验者有足够的时间从容的观测、研究,已知物体A、B的质量相等均为M,物体C的质量为m,轻绳与轻滑轮间的摩擦不计,绳子不可伸长,如果m=,求: ⑴物体B从静止开始下落一段距离的时间与其自由落体下落同样的距离所用时间的比值; ⑵系统由静止释放后运动过程中物体C对B的拉力.
(13分)如图甲所示,斜面体固定在粗糙的水平地面上,底端与水平面平滑连接,一个可视为质点的物块从斜面体的顶端自由释放,其速率随时间变化的图像如图乙所示,(已知斜面与物块、地面与物块的动摩擦因数相同,g取10m/s2)求: ⑴斜面的长度s; ⑵物块与水平面间的动摩擦因数μ; ⑶斜面的倾角θ的正弦值.
如图所示,一质量为M=5.0kg的平板车静止在光滑水平地面上,平板车的上表面距离地面高h=0.8m,其右侧足够远处有一固定障碍物A.另一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5N的恒力F.当滑块运动到平板车的最右端时,两者恰好相对静止.此时车去恒力F.此后当平板车碰到障碍物A时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点切入光滑竖直圆弧轨道,并沿轨道下滑.已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R=1.0m,圆弧所对的圆心角∠BOD=θ=1060,g取10m/s2,sin530=0.8,cos530=0.6,不计空气阻力,求: (1)平板车的长度; (2)障碍物A与圆弧左端B的水平距离; (3)滑块运动圆弧轨道最低点C时对轨道压力的大小.