一列客车以v1的速度前进,司机突然发现前方轨道上有一列货车正以速度v2匀速同向前进(v1>v2),货车车尾与客车车头的距离为s0。客车司机立即刹车,使客车以大小为 a1的加速度作匀减速直线运动,而货车仍保持原速作匀速直线运动,问:客车的加速度大小符合什么条件,客车与货车才不会碰撞。
在电场中把电量为2.0×10-9C的正电荷从A点移到B点,电场力做功1.5×10-7J,再把这个电荷从B点移到C点,克服电场力做功4.0×10-7J. (1)求A、C两点间电势差(2)电荷从A经B移到C,电势能的变化怎样
如图所示,离子发生器发射一束质量为m,电荷量为+q的离子,从静止经PQ两板间的加速电压加速后,以初速度v0再从a点沿ab方向进入一匀强电场区域,abcd所围成的正方形区域是该匀强电场的边界,已知正方形的边长为L,匀强电场的方向与ad边平行且由a指向d。(1)求加速电压U0;(2)若离子恰从c点飞离电场,求ac两点间的电势差Uac;(3)若离子从边界上某点飞出时的动能为mv02,试判断离子从哪条边界飞出,并求此时匀强电场的场强大小E。
如图所示,M为一线圈电阻rM="1" Ω的电动机,一定值电阻R=4Ω,电源电动势E=9V。当S闭合时,电压表的示数为U1=8.0V,当开关S断开时,电压表的示数为U2=4.0V。求:(1)电源内阻r;(2)开关S断开时电源输出功率; (3)开关S断开时电动机输出的机械功率.
如图所示的狭长区域内有垂直于纸面向里的匀强磁场,区域的左、右两边界均沿竖直方向,磁场左、右两边界之间的距离L,磁场磁感应强度的大小为B.某种质量为m,电荷量q的带正电粒子从左边界上的P点以水平向右的初速度进入磁场区域,该粒子从磁场的右边界飞出,飞出时速度方向与右边界的夹角为30º。重力的影响忽略不计。 (1)求该粒子在磁场中做圆周运动的轨道半径; (2)求该粒子的运动速率; (3)求该粒子在磁场中运动的时间;
如图所示,竖直平面内的四分之一圆轨道下端与水平桌面相切,小滑块A和B分别静止在圆弧轨道的最高点和最低点,现将A无初速度释放,A与B碰撞后结合为一个整体,并沿桌面滑动,已知圆弧轨道光滑,半径R=0.2m,A和B的质量相等,A和B整体与桌面之间的动摩擦因数,重力加速度取,求(1)碰撞前瞬间A的速率v(2)碰撞后瞬间A和B整体的速率(3)A和B整体在桌面上滑动的距离l和运动的时间t