AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示。一小球自A点起由静止开始沿轨道下滑。已知圆轨道半径为R,小球的质量为m,不计各处摩擦。求(1)小球运动到B点时的动能(2)小球下滑到距水平轨道的高度为R时的速度大小和方向(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力NB、NC各是多大?
机械横波某时刻的波形图如图所示,波沿x轴负方向传播,质点p的坐标.从此时刻开始计时.(1)若每间隔最小时间0.4 s重复出现波形图,求波速;(2)若p点经0.4 s第一次达到正向最大位移,求波速;(3)若p点经0.4 s到达平衡位置,求波速。
水深10m处有一无底铁箱倒扣在水底。且内部充满水,铁箱质量为560kg,容积为1m3,水温恒为7℃,同学们设计的打捞方案是用软管向铁箱内泵入空气,不计铁箱高度,厚度及泵入的空气质量,已知大气压恒为p0=1atm=1.0×105Pa,那么需要向铁箱内泵入多大体积的1atm、27℃的空气?(g=10m/s2)
如图所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O为3a处有一个竖直放置的荧光屏,荧光屏与x轴相交于Q点,且纵贯第四象限。一个顶角等于30°的直角三角形区域内存在垂直平面向里的匀强磁场,三角形区域的一条直角边ML与y轴重合,且ML被x轴垂直平分。已知ML的长度为6a,磁感应强度为B,电子束以相同的速度v0从LO区间垂直y轴和磁场方向射入直角三角形区域。从y=-2a射入磁场的电子运动轨迹恰好经过原点O,假设第一象限的电场强度大小为E=Bv0,试求:(1)电子的比荷;(2)电子束从+y轴上射入电场的纵坐标范围;(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
如图所示,在竖直平面内有半径为R="0.4" m的光滑1/4圆弧AB,圆弧B处的切线水平,O点在B点的正下方,B点高度为h="0.8" m。在B端接一长为L=4.0m的木板MN。一质量为m=2.0kg的滑块,与木板间的动摩擦因数为0.1,滑块以某一速度从N点滑到板上,恰好运动到A点。(g取10 m/s2)求:(1)滑块从N点滑到板上时初速度的大小;(2)从A点滑回到圆弧的B点时对圆弧的压力;(3)若将木板右端截去长为ΔL的一段,滑块从A端静止释放后,将滑离木板落在水平面上P点处,要使落地点P距O点最远,ΔL应为多少?
如图甲所示,在光滑绝缘水平桌面内建立xOy坐标系,在第Ⅱ象限内有平行于桌面的匀强电场,场强方向与x轴负方向的夹角θ=45°。在第Ⅲ象限垂直于桌面放置两块相互平行的平板C1、C2,两板间距为d1=0.6m,板间有竖直向上的匀强磁场,两板右端在y轴上,板C1与x轴重合,在其左端紧贴桌面有一小孔M,小孔M离坐标原点O的距离为l1=0.72m。在第Ⅳ象限垂直于x 轴放置一竖直平板C3,垂足为Q,Q、O相距d2=0.18m,板C3长l2=0.6m。现将一带负电的小球从桌面上的P点以初速度垂直于电场方向射出,刚好垂直于x轴穿过C1板上的M孔,进入磁场区域。已知小球可视为质点,小球的比荷,P点与小孔M在垂直于电场方向上的距离为,不考虑空气阻力。求:(1)匀强电场的场强大小;(2)要使带电小球无碰撞地穿出磁场并打到平板C3上,求磁感应强度B的取值范围;(3)以小球从M点进入磁场开始计时,磁场的磁感应强度随时间呈周期性变化,如图乙所示,则小球能否打在平板C3上?若能,求出所打位置到Q点距离;若不能,求出其轨迹与平板C3间的最短距离。(,计算结果保留两位小数)