在数列中,已知a1=2,an+1=4an-3n+1,n∈.(1)设,求数列的通项公式;(2)设数列的前n项和为Sn,证明:对任意的n∈,不等式Sn+1≤4Sn恒成立.
(本小题满分12分)已知函数(,实数,为常数).(Ⅰ)若,求在处的切线方程;(Ⅱ)若,讨论函数的单调性.
(本小题满分12分)为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率;(Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为,求随机变量的分布列,及数学期望.
(本小题满分12分)如图,四棱锥的底面为正方形,侧棱底面,且,分别是线段的中点.(Ⅰ)求证://平面;(Ⅱ)求证:平面;(Ⅲ)求二面角的大小.
(本小题满分10分)在中,分别为角所对的三边,已知.(Ⅰ)求角的值;(Ⅱ)若,,求的长.
(本小题满分14分)已知函数. (Ⅰ)若函数在定义域内为增函数,求实数的取值范围;(Ⅱ)当时,试判断与的大小关系,并证明你的结论;(Ⅲ) 当且时,证明:.