如图所示导体棒ab质量为100g,用绝缘细线悬挂后,恰好与宽度为50cm的光滑水平导轨良好接触.导轨上放有质量为200g的另一导体棒cd,整个装置处于竖直向上的磁感强度B=0.2T的匀强磁场中,现将ab棒拉起0.8m高后无初速释放.当ab第一次摆到最低点与导轨瞬间接触后还能向左摆到0.45m高处,求:⑴cd棒获得的速度大小;⑵瞬间通过ab棒的电量;⑶此过程中回路产生的焦耳热.
一颗绕地球运转的卫星,距地面高度为.已知地球半径为R,地面重力加速度为.求这颗卫星运转的线速度大小和周期分别是多少?
用200N的拉力将地面上一个质量为10kg的物体加速提升10m至A点,空气阻力忽略不计。g取。求:(1)这一过程中重力对物体所做的功。(2)这一过程中拉力对物体所做的功。(3)物体在A点具有的动能。
将小球从距地面0.8m高处以的速度水平抛出, g取。求小球在空中运动的时间和落地时速度的大小.
某压力锅结构如图所示。盖好密封锅盖,将压力阀套在出气孔上,给压力锅加热,当锅内气体压强达到一定值时,气体就把压力阀顶起。假定在压力阀被顶起时,停止加热。 (1)若此时锅内气体的体积为V,摩尔体积为V0,阿伏加德罗常数为NA,写出锅内气体分子数的估算表达式。 (2)假定在一次放气过程中,锅内气体对压力阀及外界做功1 J,并向外界释放了2 J的热量。锅内原有气体的内能如何变化?变化了多少? (3)已知大气压强P随海拔高度H的变化满足P=P0(1-αH),其中常数α>0。结合气体定律定性分析在不同的海拔高度使用压力锅,当压力阀被顶起时锅内气体的温度有何不同。
如图(a)所示,一个电阻值为R ,匝数为n的圆形金属线与阻值为2R的电阻R1连结成闭合回路。线圈的半径为r1 . 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示。图线与横、纵轴的截距分别为t0和B0。导线的电阻不计。求0至t1时间内 (1)通过电阻R1上的电流大小和方向; (2)通过电阻R1上的电量q及电阻R1上产生的热量。