一质量为m的质点,系在细绳的一端,绳的另一端固定在平面上,此质点在粗糙水平面上作半径为r的圆周运动,设质点的最初速率是v0,当它运动一周时,其速率为v0/2,求:(1)摩擦力作的功;(2)动摩擦因数;(3)在静止以前质点共运动了多少圈?
如图,直角坐标系在一真空区域里,y轴的左方有一匀强电场,场强方向跟y轴负方向成θ=30°角,y轴右方有一垂直于坐标系平面的匀强磁场,在x轴上的A点有一质子发射器,它向x轴的正方向发射速度大小为v=2.0×106m/s的质子,质子经磁场在y轴的P点射出磁场,射出方向恰垂直于电场的方向,质子在电场中经过一段时间,运动到x轴的Q点。已知A点与原点O的距离为10cm,Q点与原点O的距离为(20-10)cm,质子的比荷为。求: (1)磁感应强度的大小和方向; (2)质子在磁场中运动的时间; (3)电场强度的大小。
如图所示,木板与水平地面间的夹角θ可以随意改变,当θ=30°时,可视为质点的一小木块恰好能沿着木板匀速下滑。若让该小木块从木板的底端以大小恒定的初速率v0的速度沿木板向上运动,随着θ的改变,小物块沿木板向上滑行的距离x将发生变化,重力加速度为g。 (1) 求小物块与木板间的动摩擦因数; (2) 当θ角为何值时,小物块沿木板向上滑行的距离最小,并求出此最小值。
(10分)如图所示,质量为mA=2kg的木块A静止在光滑水平面上。一质量为mB= 1kg的木块B以某一初速度v0=5m/s沿水平方向向右运动,与A碰撞后都向右运动。木块A 与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。后来木块A与B发生二次碰撞,碰后A、B同向运动,速度大小分别为0.9m/s、1.2m/s。求: ①第一次木块A、B碰撞过程中A对B的冲量大小、方向 ②木块A、B第二次碰撞过程中系统损失的机械能是多少。
(10分)、“拔火罐”是一种中医疗法,为了探究“火罐”的“吸力”,某人设计了如下图实验。圆柱状气缸(横截面积为S)被固定在铁架台上,轻质活塞通过细线与重物m相连,将一团燃烧的轻质酒精棉球从缸底的开关K处扔到气缸内,酒精棉球熄灭时(设此时缸内温度为t°C)密闭开关K,此时活塞下的细线刚好拉直且拉力为零,而这时活塞距缸底为L.由于气缸传热良好,重物被吸起,最后重物稳定在距地面L/10处。已知环境温度为27°C不变,mg/s与1/6大气压强相当,气缸内的气体可看做理想气体, 求t值。
(19分)如图a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷的正电荷置于电场中的O点由静止释放,经过后,电荷以的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).计算结果可用π表示。 (1)求O点与直线MN之间的电势差; (2)求图b中时刻电荷与O点的水平距离; (3)如果在O点右方d=67.5cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间。