如图所示,一质量为m的滑块以大小为v0的速度经过水平直轨道上的a点滑行距离为s后开始沿竖直平面的半圆形轨道运动,滑块与水平直轨道间的动摩擦因数为μ,水平直轨道与半圆形轨道相切连接,半圆形轨道半径为R,滑块到达半圆形轨道最高点b时恰好不受压力.试求:(1)滑块刚进入和刚离开半圆形轨道时的速度;(2)滑块落回到水平直轨道时离a点的距离.
为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个小物块以初速度,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数(g取10m/s2,)(1)要使小物块不离开轨道,并从水平轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件?(2)a.为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件?b.按照“a”的要求,小物块进入轨道后可以有多少次通过圆轨道上距水平轨道高为0.01m的某一点。
如图所示,间距为L、电阻为零的U形金属竖直轨道,固定放置在磁感应强度为B的匀强磁场中,磁场方向垂直纸面里。竖直轨道上部套有一金属条bc,bc的电阻为R,质量为2m,可以在轨道上无摩擦滑动,开始时被卡环卡在竖直轨道上处于静止状态。在bc的正上方高H处,自由落下一质量为m的绝缘物体,物体落到金属条上之前的瞬问,卡环立即释改,两者一起继续下落。设金属条与导轨的摩擦和接触电阻均忽略不计,竖直轨道足够长。求:(1)金属条开始下落时的加速度;(2)金属条在加速过程中,速度达到v1时,bc对物体m的支持力;(3)金属条下落h时,恰好开始做匀速运动,求在这一过程中感应电流产生的热量。
如图所示,一根光滑绝缘细杆与水平面成的角倾斜固定。细杆的一部分处在场强方向水平向右的匀强电场中,场强E=2×104N/C。在细杆上套有一个带电量为q=-1.73×105C、质量为m=3×10-2kg的小球。现使小球从细杆的顶端A由静止开始沿杆滑下,并从B点进入电场,小球在电场中滑至最远处的C点。已知AB间距离,g=10m/s2。求:(1)带电小球在B点的速度vB;(2)带电小球进入电场后滑行最大距离x2;(3)带电小球从A点滑至C点的时问是多少?
把一个质量为m、带正电荷且电量为q的小物块m放在一个水平轨道的P点上,在轨道的O点有一面与轨道垂直的固定墙壁。轨道处于匀强电场中,电场强度的大小为E,其方向与轨道(ox轴)平行且方向向左。若把小物块m从静止状态开始释放,它能够沿着轨道滑动。已知小物块m与轨道之间的动摩擦因数μ,P点到墙壁的距离为,若m与墙壁发生碰撞时,其电荷q保持不变,而且碰撞为完全弹性碰撞(不损失机械能)。求:(1)如果在P点把小物块从静止状态开始释放,那么它第1次撞墙后瞬时速度为零的位置坐标、第2次撞墙之后速度为零的位置坐标的表达式分别是什么?(2)如果在P点把小物块从静止状态开始释放,那么它最终会停留在什么位置?从开始到最后它一共走了多少路程(s)?(3)如果在P点瞬间给小物块一个沿着x轴向右的初始冲量,其大小设为I,那么它第一次又回到P点时的速度()大小为多少?它最终会停留在什么位置?从开始到最后它一共走了多少路程?
下图为汤姆生在1897年测量阴极射线(电子)的荷质比时所用实验装置的示意图。K为阴极,A1和A2为连接在一起的中心空透的阳极,电子从阴检发出后被电场加速,只有运动方向与A1和A2的狭缝方向相同的电子才能通过,电子被加速后沿方向垂直进入方向互相垂直的电场、磁场的叠加区域。磁场方向垂直纸面向里,电场极板水平放置,电子在电场力和磁场力的共同作用下发生偏转。已知圆形磁场的半径为R,圆心为C。某校物理实验小组的同学们利用该装置,进行了以下探究测量:首先他们调节两种场强的大小:当电场强度的大小为E,磁感应强度的大小为B时,使得电子恰好能够在复合场区域内沿直线运动;然后撤去电场,保持磁场和电子的速度不变,使电子只在磁场力的作用下发生偏转,打要荧屏上出现一个亮点P,通过推算得到电子的偏转角为α(即:之间的夹角)。若可以忽略电子在阴极K处的初速度,则:(1)电子在复合场中沿直线向右飞行的速度为多大?(2)电子的比荷为多大?(3)利用上述已知条件,你还能再求出一个其它的量吗?若能,请指出这个量的名称。