地震波的纵波和横波在地表附近的传播速度分别为9.1 km/s和3.7 km/s,在一次地震时某观测站记录的纵波和横波的到达时刻相差50 s,地震的震源距这个观测站的距离约为多少千米?
如图,一直导体棒质量为、长为、电阻为r,其两端放在位于水平面内间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为,方向垂直于导轨所在平面。开始时,给导体棒一个平行于导轨的初速度。在棒的运动速度由减小至的过程中,通过控制负载电阻的阻值使棒中的电流强度保持恒定。导体棒一直在磁场中运动。若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。
如图所示,竖直平面内有一半径为、电阻为、粗细均匀的光滑半圆形金属环,在、处与相距为、电阻不计的平行光滑金属轨道、相接,之间接有电阻,已知=12,=4。 在MN上方及下方有水平方向的匀强磁场和,磁感应强度大小均为。现有质量为、电阻不计的导体棒,从半圆环的最高点处由静止下落,在下落 过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行轨道足够长。已知导体棒下落/2时的速度大小为,下落到处的速度大小为。 (1)求导体棒从下落/2时的加速度大小。 (2)若导体棒进入磁场Ⅱ后棒中电流大小始终不变,求磁场I和Ⅱ之间的距离和上的电功率。 (3)若将磁场Ⅱ的边界略微下移,导体棒刚进入磁场Ⅱ时速度大小为,要使其在外力作用下做匀加速直线运动,加速度大小为,求所加外力随时间变化的关系式。
如图15所示,AB与CD为两个对称斜面,其上部都足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R=2.0m,一个物体在离弧底E高度为h=3.0m处,以初速度V0=4m/s沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g=10m/s2)。
下图所示,一个质量为m的小球自高为h的地方,由静止落下,空气阻力为小球重力的0.02倍。小球与地面碰撞无机械能损失,小球多次弹起落下,最后静止于地面。小球从下落开始到最后停下来运动的总路程为多少?
如图,长木板ab的b端固定一档板,木板连同档板的质量为M=4.0kg,a、b间的距离S=2.0m。木板位于光滑水平面上。在木板a端有一小物块,其质量m=1.0kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态。现令小物块以初速V0=4m/s沿木板向前滑动,直到和档板相撞。碰撞后,小物块恰好回到a端而不脱离木板。求碰撞过程中损失的机械能。