如图所示,有一根长为2L的轻质细线,它的两端固定在一根长为L的竖直转轴AB上,线上套一个可以自由移动的质量为m的小球。当转轴转动时,小球正好以B为圆心,在水平面内做匀速圆周运动。求细线的张力和小球的线速度。
(1)乙接棒前在接力区内跑过的距离。(2)乙起跑时距甲的距离。
(1)电梯在最初加速阶段的加速度a1与最后减速阶段 的加速度a2的大小; (2)电梯在3.0~13.0s时段内的速度v的大小; (3)电梯在19.0s内上升的高度H。
(1)若小车恰好能通过第一个圆形轨道的最高点A处,则其在P点的初速度应为多大?(2)若小车在P点的初速度为10m/s,则小车能否安全通过两个圆形轨道?
(1)若输入腔中的电场保持不变,电子以一定的初速度v0从A板上的小孔沿垂直于A板的方向进入输入腔,而由B板射出输入腔时速度减为v0/2,求输入腔中的电场强度E的大小(2)现将B板接地(图中未画出),在输入腔的两极板间加上如图所示周期为T的高频方波交变电压,在t=0时A板电势为U0,与此同时电子以速度v0连续从A板上的小孔沿垂直A板的方向射人输入腔中,并能从B板上的小孔射出,射向输出腔的C孔.若在nT~(n+1)T的时间内(n=0,l,2,3…),前半周期经B板射出的电子速度为v1,后半周期经B板射出的电子速度为v2,求v1与v2的比值。