如图所示,在xOy平面内y>0的区域中存在垂直纸面向外的匀强磁场,磁感应强度大小为B0,在y<0的区域也存在垂直纸面向外的匀强磁场(图中未画出),一带正电的粒子从y轴上的P点垂直磁场入射,速度方向与y轴正向成45¡。粒子第一次进入y<0的区域时速度方向与x轴正向成135¡,再次在y>0的区域运动时轨迹恰与y轴相切。已知OP的距离为,粒子的重力不计,求: (1)y<0的区域内磁场的磁感应强度大小; (2)粒子第2n(n∈N+)次通过x轴时离O点的距离(本问只需写出结果)。
如图所示为一种加速度仪的示意图。质量为m的振子两端连有劲度系数均为k的轻弹簧,电源的电动势为E,不计内阻,滑动变阻器的总阻值为R,有效长度为L,系统静止时滑动触头位于滑动变阻器正中,这时电压表指针恰好在刻度盘正中。求: ⑴系统的加速度a(以向右为正)和电压表读数U的函数关系式。 ⑵将电压表刻度改为加速度刻度后,其刻度是均匀的还是不均匀的?为什么? ⑶若电压表指针指在满刻度的3/4位置,此时系统的加速度大小和方向如何?
(1)托盘上未放物体时,在托盘自身重力作用下,P1离A的距离xl. (2)托盘上放有质量为m的物体时,P1离A的距离x2. (3)在托盘上未放物体时通常先核准零点,其方法是:调节P2,使P2离A的距离也为xl,从而使P1、P2间的电压为零.校准零点后,将物体m放在托盘上,试推导出物体质量m与P1、P2间的电压U之间的函数关系式.
(1)加速电场的电压U (2)Q点的坐标(x,y) (3)电子打在荧光屏上的速度.
“勇气”号离火星地面12m时与降落伞自动脱离,被众气囊包裹的“勇气”号下落到地面后又弹跳到15m高处,这样上下碰撞了若干次后,才静止在火星表面上.假设“勇气”号下落及反弹运动均沿竖直方向.已知火星的半径为地球半径的二分之一,质量为地球的九分之一(取地球表面的重力加速度为10m/s2,计算结果可保留根式). (1)根据上述数据,火星表面的重力加速度是多少? (2)若被众气囊包裹的“勇气”号第一次碰火星地面时,其机械能损失为其12m高处与降落伞脱离时的机械能的20﹪,不计空气的阻力,求“勇气”号与降落伞脱离时的速度
有一辆汽车以15 m/s的速度匀速行驶,在其正前方有一陡峭山崖,汽车鸣笛2 s后司机听到回声,此时汽车距山崖的距离多远?(v声="340" m/s)