有一台热机,从热源甲每小时吸热量为的热量,向热源乙放出的热量,热机传动部分产生的热量为从甲热源吸收热量的10%,求:热机的输出功率和效率?
已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期,地球的自转周期,地球表面的重力加速度g。某同学根据以上条件,提出一种估算地球质量M的方法:同步卫星绕地心做圆周运动,由得。(1)请判断上面的结果是否正确,并说明理由。如果不正确,请给出正确的解法和结果。(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。
某游乐场中有一种叫“空中飞椅”的游乐设施,其基本装置是将绳子上端固定在转盘的边缘上,绳子下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋。若将人和座椅看成是一个质点,则可简化为如图所示的物理模型。其中P为处于水平面内的转盘,可绕竖直转轴转动,设绳长l="10" m,质点的质量m= 60kg,转盘静止时质点与转轴之间的距离d =4m。转盘逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角。(不计空气阻力及绳重,绳子不可伸长,sin ="0." 6,cos="0." 8,g=10)求:(1)质点与转盘一起做匀速圆周运动时转盘的角速度及绳子的拉力;(2)质点从静止到做匀速圆周运动的过程中,绳子对质点做的功。
如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端吊一个质量为m的铁球(可视作质点),球离地的高度h=L,当绳受到大小为3mg的拉力时就会断裂。现让环与球一起以的速度向右运动,在A处环被挡住而立即停止,A离右墙的水平距离也为L。不计空气阻力,已知当地的重力加速度为g。试求:(1)在环被挡住而立即停止时绳对小球的拉力大小;(2)在以后的运动过程中,球的第一次碰撞点离墙角B点的距离是多少?
过山车是游乐场中常见的设施。图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,、、分别是三个圆形轨道的最低点,、间距与、间距相等,半径、。一个质量为g的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,、间距。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二个圆形轨道,、间距应是多少; (3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。
如图所示,一个水平放置的圆桶绕轴匀速转动,转动角速度="2.5" rad/s,桶壁上P处有一圆孔,桶璧很薄,桶的半径R=2m。当圆孔运动到桶的上方时,在圆孔的正上方h=3.2m处有一个小球由静止开始下落,已知圆孔的半径略大于小球的半径。试通过计算判断小球是否和圆桶碰撞(不考虑空气阻力,g=10)