如图所示,A点坐标为(0,10)cm,C点坐标为(10,0)cm,在正方形OABC区域内有匀强电场,场强方向与x轴正向相同,E=N/C.在A点用长L=2cm的细绳悬挂质量为m=0.1kg,电荷量为+q=C的小球.小球原来静止,剪断细绳,小球将开始运动,当它运动到横坐标为10cm的点时,此点纵坐标为多少?
如图所示,一个变压器(可视为理想变压器)的原线圈接在220V的市电上,向额定电压为1.80×104V的霓虹灯供电,使它正常发光.为了安全,需在原线圈回路中接入熔断器,使副线圈电路中电流超过12mA时,熔丝就熔断. (1)熔丝的熔断电流是多大? (2)当副线圈电路中电流为10mA时.变压器的输入功率是多大?
钍核发生衰变生成镭核并放出一个粒子。设该粒子的质量为、电荷量为q,它进入电势差为U的带窄缝的平行平板电极和间电场时,其速度为,经电场加速后,沿方向进入磁感应强度为B、方向垂直纸面向外的有界匀强磁场,垂直平板电极,当粒子从点离开磁场时,其速度方向与方位的夹角,如图所示,整个装置处于真空中。 (1)写出钍核衰变方程; (2)求粒子在磁场中沿圆弧运动的轨道半径R; (3)求粒子在磁场中运动所用时间。
汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A'中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P'间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O'点,(O'与O点的竖直间距为d,水平间距可忽略不计.此时,在P和P'间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示). (1)求打在荧光屏O点的电子速度的大小。 (2)推导出电子的比荷的表达式
两块金属板a、b平行放置,板间存在与匀强电场正交的匀强磁场,假设电场、磁场只存在于两板间的空间区域。一束电子以匀强磁场,假设电场、磁场只存在于两板间的空间区域。一束电子以一定的初速度υ从两极板中间,沿垂直于电场、磁场的方向射人场中,无偏转地通过场区,如图所示。 已知板长l=l0cm,两板间距d=3.0cm,两板间电势差U=150V,υ0=2.0×107m/s。 (1)求磁感应强度B的大小; (2)若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少? (电子所带电荷量的大小与其质量之比e/m=1.76×1011C/kg,电子电荷量的大小e=1.60 ×10-19C)
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º。一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。