(1)求从A点产生的粒子经电场和磁场后,打在光屏上的位置。(2)若将圆形磁场区以O点为轴,整体逆时针将OB缓慢转过90°(与y轴重合),求此过程中粒子打在光屏上的点距C点的最远距离。
如图所示,在距一质量为M、半径为R、密度均匀的球体中心2R处,有一质量为m的质点,M对m的万有引力的大小为F。现从M中挖出一半径为r的球体,如图,OO′=R/2。求M中剩下的部分对m的万有引力的大小。
在天文学中,把两颗相距较近的恒星叫双星,已知两恒星的质量分别为m和M,两星之间的距离为L,两恒星分别围绕共同的圆心作匀速圆周运动,如图所示,求恒星运动的半径和周期。
如果某行星有一颗卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的密度为多少?
已知地球绕太阳公转的轨道半径r=1.491011m, 公转的周期T=3.16107s,求太阳的质量M。
如图14-7所示,置于空气中的一个不透明容器内盛满某种透明液体.容器底部靠近器壁处有一竖直放置的6.0 cm长的线光源.靠近线光源一侧的液面上盖有一遮光板,另一侧有一水平放置的与液面等高的望远镜,用来观察线光源.开始时通过望远镜不能看到线光源的任何一部分.将线光源沿容器底向望远镜一侧平移至某处时,通过望远镜刚好可以看到线光源底端,再将线光源沿同一方向移动8.0 cm,刚好可以看到其顶端.求此液体的折射率n. 图14-7