.一人用一根长1m,只能承受46N的绳子,拴着一个质量为1kg的小球,在竖直平面内作圆周运动,已知转轴O离地6m,如图6所示,要使小球到达最低点时绳断,求小球到达最低点的最小速率及此条件下小球落地点到O点的水平距离。
如图3-2-11所示,在竖直平面内,有一半径为R的绝缘的光滑圆环,圆环处于场强大小为E,方向水平向右的匀强电场中,圆环上的A、C两点处于同一水平面上,B、D分别为圆环的最高点和最低点.M为圆环上的一点,∠MOA=45°.环上穿着一个质量为m,带电量为+q的小球,它正在圆环上做圆周运动,已知电场力大小qE等于重力的大小mg,且小球经过M点时球与环之间的相互作用力为零.试确定小球经过A、B、C、D点时的动能各是多少?
如图3(a)所示,真空室中电极K发出的电子(初速为零)。经U=1000V的加速电场后,由小孔S沿两水平金属板A、B两板间的中心线射入,A、B板长L=0.20m,相距d=0.020m,加在A、B两板间的电压U随时间t变化u—t图线如图3(b)。设A、B两板间的电场可以看做是均匀的,且两板外无电场。在每个电子通过电场区域的极短时间内,电场可视作恒定的。两板右侧放一记录圆筒,筒的左侧边缘与极板右端距离,筒绕其竖直轴匀速转动,周期,筒的周长,筒能接收到通过A、B板的全部电子。(1)以时(见图b此时)电子打到圆筒记录纸上的点作为坐标系的原点,并取轴竖直向上,试计算电子打到记录纸上的最高点的坐标(不计重力)。(2)在给出的坐标纸(如图d)上定量地画出电子打到记录纸上的点形成的图线。
绝缘的半径为R的光滑圆环,放在竖直平面内,环上套有一个质量为m,带电量为+q的小环,它们处在水平向右的匀强电场中,电场强度为E(如图所示),小环从最高点A由静止开始滑动,当小环通过(1)与大环圆心等高的B点与(2)最低点C时,大环对它的弹力多大?方向如何?
一网球运动员在离开网的水平距离为12m处沿水平方向发球,发球高度为2.25m,网的高度为0.9m.(取g=10m/s2,不计空气阻力)(1)若网球在网上0.1m高处越过,求网球的初速度;(2)若按上述初速度发球,求该网球落地点到网的距离.
用30cm的细线将质量为4×10-3㎏的带电小球P悬挂在O点下,当空中有方向为水平向右,大小为1×104N/C的匀强电场时,小球偏转37°后处在静止状态。(1)分析小球的带电性质(2)求小球的带电量(3)求细线的拉力