.如图所示,物重30 N,用OC绳悬挂在O点,OC绳能承受最大拉力为20N,再用一绳系OC绳的A点,BA绳能承受的最大拉力为30 N,现用水平力拉BA,可以把OA绳拉到与竖直方向成多大角度?
资料:理论分析表明,逃逸速度是环绕速度的倍.即,由此可知,天体的质量M越大,半径R越小,逃逸速度也就越大,也就是说,其表面的物体就越不容易脱离它的束缚.有些恒星,在它一生的最后阶段,强大的引力把其中的物质紧紧的压在一起,密度极大,每立方米的质量可达数吨.它们的质量非常大,半径又非常小,其逃逸速度非常大.于是,我们自然要想,会不会有这样的天体,它的质量更大,半径更小,逃逸速度更大,以m/s的速度传播的光都不能逃逸?如果宇宙中真的存在这样的天体,即使它确实在发光,光也不能进入太空,我们根本看不到它.这种天体称为黑洞(black hole)。1970年,科学家发现了第一个很可能是黑洞的目标.已知m/s,求:(1)逃逸速度大于真空中光速的天体叫黑洞(black hole),设某黑洞的质量等于太阳的质量kg,求它的可能最大半径(这个半径叫做Schwarzchild半径).(2)在目前天文观测范围内,物质的平均密度为,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(球的体积计算方程)
两个质量均为m的物体,由轻质硬杆相连,形如一个“哑铃”,围绕一个质量为M的天体旋转,如图所示,两物体和天体质心在一条直线上,两物体分别以和为半径绕M做圆周运动,两物体成了M的卫星,求此卫星的运动周期和轻质硬杆分别对A、B的弹力。
一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度抛出一个小球,测得小球经过时间t落回地出点,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度。
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为的均匀球体。
宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度。