如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m,金属环上分别接有灯、,两灯的电阻均为.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以的速率在环上向右匀速滑动,求棒滑过圆环直经的瞬间,MN中的电动势和流过的电流;(2)撤去中间的金属棒MN,将右边的半圆环以为轴向上翻转90 ,若此后磁场随时间均匀变化,其变化率为T/s,求的功率.
如图所示,由于街道上的圆形污水井盖破损,临时更换了一个稍大于井口的红色圆形平板塑料盖。为了测试因塑料盖意外移动致使盖上的物块滑落入污水井中的可能性,有人做了一个实验:将一个可视为质点、质量为m的硬橡胶块置于塑料盖的圆心处,给塑料盖一个沿径向的瞬间水平冲量,使之获得一个水平向右的初速度。实验结果是硬橡胶块恰好与塑料盖分离。设硬橡胶块与塑料盖间的动摩擦因数为μ,塑料盖的质量为M、半径为R,假设塑料盖与地面之间的摩擦可忽略,且不计塑料盖的厚度。 (1)塑料盖的初速度大小为多少? (2)通过计算说明硬橡胶块是落人井内还是落在地面上?
如图所示,在虚线DF的右侧整个空间存在着垂直于纸面向里的匀强磁场,磁感强度B=0.5特,其中在矩形区域DFGH内还分布有水平向左的匀强电场。绝缘光滑斜面倾角θ=60°,其末端与边界DF交于C点,一带正电的小球质量为m=2×10—3kg,从距C点高H=0.8米处的A点由静止释放,离开斜面后,从C点进入DFGH区域后恰能沿直线运动最后从边界HG上的M点进入磁场,取g=10m/s2,求: (1)小球滑到C点时速度。 (2)电场强度的大小。 (3)如果小球从M点进入磁场后能经过图中的N点,已知MN两点竖直高度差h=0.45米,求小球经过N点时的速度大小。
如图甲所示,两根电阻不计的光滑平行金属导轨水平固定放置,间距为d ="0.5" m,左端连接一个阻值为R=2 W的电阻,右端连接一个阻值为RL="4" W的小灯泡,在矩形区域CDFE内有竖直向上的匀强磁场,磁感应强度B随时间按图乙所示变化,CE长为x="2" m。在t=0时刻,一阻值为r="2" W的金属棒在恒力F作用下由静止开始从图示的ab位置沿导轨向右运动,金属棒从ab运动到EF的过程中,小灯泡的亮度始终没有发生变化,求: (1) 通过小灯泡的电流强度; (2) 恒力F的大小; (3) 金属棒的质量。
如图所示,质量为mA=4.9kg,长为L="0.50" m,高为h="0.20" m的木块A放在水平地面上,质量为mB=1.0kg的小木块B(可视为质点)放在木块A的右端,质量为mC=0.10kg、初速度大小为v0=100m/s的子弹C从A的左端水平射入并和它一起以共同速度运动(射入时间忽略不计).若A、B之间接触面光滑,A和地面之间的动摩擦因数为=0.25,取g=10m/s2.求: (1)子弹刚射入木块A后它们的共同速度; (2)子弹射入A后到B落地的时间t; (3)A滑行的总路程s.
质量为的飞机静止在水平直跑道上。飞机起飞过程可分为两个匀加速运动阶段,其中第一阶段飞机的加速度为a1,运动时间为t1。当第二阶段结束时,飞机刚好达到规定的起飞速度v0。飞机起飞过程中,在水平直跑道上通过的路程为s,受到的阻力恒为f。求第二阶段飞机运动的加速度a2和时间t2。