利用超声波可以探测鱼群的位置。在一只装有超声波发射和接收装置的渔船上,向选定的方向发射出频率f=5.8×104Hz的超声波后,经过时间t=0.64s收到从鱼群反射回来的反射波。已知这列超声波在水中的波长λ=2.5cm,求鱼群到渔船的距离是多少?
如图所示,在直角坐标系的I、Ⅱ象限内有垂直于纸面向里的匀强磁场,第Ⅲ象限有沿y轴负方向的匀强电场,第Ⅳ象限内无电场和磁场。质量为m,电荷量为q的粒子由M点以速度沿x轴负方向进入电场,不计粒子的重力,粒子经N和x轴上的P点最后又回到M点。设OM=OP =l,ON=2l,求:(1)电场强度E的大小;(2)匀强磁场磁感应强度B的大小;(3)粒子从M点进入电场,经N、P点最后又回到M点所用的时间t。
如图所示,在x轴上方存在着沿y轴负方向的匀强电场,电场强度为E,在x轴下方有一垂直纸面向外的匀强磁场,磁感应强度为B。现在坐标原点O处有一正离子源,沿y轴负方向发射比荷均为c的正离子。由于正离子的初速度不同,它们速度第一次为零时的位置不同,所需时间也不一样。(1)写出正离子从坐标原点到速度第一次为零,所需时间与初速度关系的表达式;(2)求具有不同初速度的正离子速度第一次为零的位置构成的曲线方程,并指出是什么曲线。
如图甲所示,两平行金属板间接有如图乙所示的随时间t变化的电压u,两板间电场可看作是均匀的,且两板外无电场,极板长L=0.2 m,板间距离d="0.2" m,在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线垂直,磁感应强度T,方向垂直纸面向里。现有带正电的粒子流沿两板中线连续射入电场中,已知每个粒子的速度m/s,一荷质比C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。(1)试求带电粒子射出电场时的最大速度。(2)证明任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和出磁场时在MN上的出射点间的距离为定值。写出表达式并求出这个定值。(3)从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场。求粒子在磁场中运动的最长时间和最短时间。
如图所示,在光滑绝缘水平桌面上有两个静止的小球A和B,B在桌边缘,A和B均可视为质点,质量均为m=0.2kg,A球带正电,电荷量q=0.1C,B球是绝缘体不带电,桌面离地面的高h=0.05m.开始时A、B相距L=0.1m,在方向水平向右、大小E=10N/C的匀强电场的电场力作用下,A开始向右运动,并与B球发生正碰,碰撞中A、B的总动能无损失,A和B之间无电荷转移.求: A经过多长时间与B碰撞? A、B落地点之间的距离是多大?
地面上有一个半径为R的圆形跑道,高为h的平台边缘上的P点在地面上P′点的正上方,P′与跑道圆心O的距离为L(L>R),如图所示。跑道上停有一辆小车,现从P点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计)。问:(1)当小车分别位于A点和B点时(∠AOB=90°),沙袋被抛出时的初速度各为多大?(2)若小车在跑道上运动,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A点时,将沙袋抛出,为使沙袋能在B处落入小车中,小车的速率v应满足什么条件?