两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。设离子通过平行板所需的时间恰为 T(与电压变化周期相同),且所有离子都能通过两板间的空间打在右端的荧光屏上。试求:离子击中荧光屏上的位置的范围。(也就是与O‘点的最大距离与最小距离)。重力忽略不计。
利用超声波可以探测鱼群的位置。在一只装有超声波发射和接收装置的渔船上,向选定的方向发射出频率f=5.8×104Hz的超声波后,经过时间t=0.64s收到从鱼群反射回来的反射波。已知这列超声波在水中的波长λ=2.5cm,求鱼群到渔船的距离是多少?
利用超声波测量汽车的速度,超声波遇到障碍物会发生反射,测速仪发出并接收反射回来的超声波脉冲信号,根据发出和接收到的时间差,测出汽车的速度。图30(a)是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的时间差,测出汽车的速度。图30(b)中是测速仪发出的超声波信号,n1、n2分别是由汽车反射回来的信号。设测速仪匀速扫描,p1、、p2之间的时间间隔Δt=1.0s,超声波在空气中传播的速度是V=340m。/s,若汽车是匀速行驶的,则根据图(b)可知,汽车在接收到p1、、p2两个信号之间的时间内前进的距离___m,汽车的速度是_____________m/s
如图所示,由粗细相同的导线制成的正方形线框边长为L,每条边的电阻均为R,其中ab边材料的密度较大,其质量为m,其余各边的质量均可忽略不计.线框可绕与cd边重合的水平轴自由转动,不计空气阻力及摩擦.若线框从水平位置由静止释放,经历时间t到达竖直位置,此时ab边的速度大小为v.若线框始终处在方向竖直向下、磁感强度为B的匀强磁场中,重力加速度为g.求:线框在竖直位置时,ab边两端的电压及所受安培力的大小;在这一过程中,通过线框导线横截面的电荷量。
在磁感应强度为B=0.4T的匀强磁场中放一个半径r0=50 cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103rad/s逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R0=0.8Ω,外接电阻R=3.9Ω,如图所示,求:每半根导体棒产生的感应电动势;当电键S接通和断开时两电表示数。(假定RV→∞,RA→0)
如图2所示,水平面上固定有平行导轨,磁感应强度为B的匀强磁场方向竖直向下。同种合金做的导体棒ab、cd横截面积之比为2∶1,长度和导轨的宽均为L,ab的质量为m,电阻为r,开始时ab、cd都垂直于导轨静止,不计摩擦。现在给ab一个向右的瞬时速度v,在以后的运动中,求cd的最大加速度am是多少?