如图11-2所示,以边长为50cm的正方形导线框,放置在B=0.40T的匀强磁场中。已知磁场方向与水平方向成37°角,线框电阻为0.10Ω,求线框绕其一边从水平方向转至竖直方向的过程中通过导线横截面积的电量。
一个质量为m的木块,从半径为R、质量为M的1/4光滑圆槽顶端由静止滑下。在槽被固定和可沿着光滑平面自由滑动两种情况下,如图所示,木块从槽口滑出时的速度大小之比为多少?
如图(a)所示,平行金属板A和B间的距离为d,现在A、B板上加上如图(b)所示的方波形电压,t=0时A板比B板的电势高,电压的正向值为U0,反向值也为U0,现有由质量为m的带正电且电荷量为q的粒子组成的粒子束,从AB的中点O以平行于金属板方向OO'的速度v0=不断射入,所有粒子在AB间的飞行时间均为T,不计重力影响。 试求: (1)粒子打出电场时位置离O'点的距离范围 (2)粒子射出电场时的速度大小及方向 (3)若要使打出电场的粒子经某一垂直纸面的圆形区域匀强磁场偏转后,都能通过圆形磁场边界的一个点处,而便于再收集,则磁场区域的最小半径和相应的磁感强度是多大?
如图所示,小车的质量为M=3kg,车的上表面左端为光滑圆弧BC,右端为水平粗糙平面AB,二者相切于B点,AB的长为,一质量为的小物块,放在车的最右端,小物块与车之间的动摩擦因数。车和小物块一起以的速度在光滑水平面上匀速向左运动,小车撞墙后瞬间速度变为零,但未与墙粘连。g取,求: (1)小物块沿圆弧上升的最大高度; (2)小物块再次回到B点时的速度大小; (3)小物块从最高点返回后与车的速度相同时,小物块距B端多远。
如图所示,一位质量参加“挑战极限”的业余选手,要越过一宽度为的水沟,跃上高为的平台.采用的方法是:人手握一根长的轻质弹性杆一端,从点由静止开始匀加速助跑,至点时,杆另一端抵在O点的阻挡物上,接着杆发生形变、同时脚蹬地,人被弹起,到达最高点时杆处于竖直状态,人的重心在杆的顶端,此刻人放开杆水平飞出,最终趴落到平台上,运动过程中空气阻力可忽略不计. (1)设人到达点时速度,人匀加速运动的加速度,求助跑距离SAB; (2)人要到达平台,在最高点飞出时刻速度至少多大?(取g=10m/s2) (3)设人跑动过程中重心离地高度,在(1)、(2)问的条件下,在B点蹬地弹起瞬间,人至少再做多少功?
如图所示,长为L的光滑水平轨道PQ与两个曲率半径相同的光滑圆弧轨道相连,圆弧轨道与水平轨道连接处的切线为水平方向,A球以速度v0向右运动,与静止于水平轨道中点处的小球B发生碰撞,碰撞时无机械能损失,已知A、B两球的质量分别为mA,mB,且mA:mB=1:4,小球在圆弧轨道上的运动可认为是简谐运动。(每次碰撞均无机械能损失)试求: (1)第一次碰撞刚结束时小球A、B各自的速度。 (2)两球第二次碰撞位置距Q点多远? (3)讨论小球第n次碰撞结束时各自的速度。