[山东]2013届山东省莱芜市高三4月模拟考试物理试卷
下列三个演示实验中,能够反映出的共同的物理思想方法是
A.猜想假设的思想方法 |
B.微量放大的思想方法 |
C.极限分析的思想方法 |
D.建立理想化模型的思想方法 |
如图所示,Q1、Q2为两个等量同种正点电荷,在Q1、Q2产生的电场中有M、N和O三点,其中M和O在Q1、Q2的连线上(O为连线的中点),N为两电荷连线中垂线上的一点。则下列说法中正确的是
A.O点电势一定高于N点电势 |
B.O点场强一定小于M点场强 |
C.将一个负点电荷从M点移到N点,需克服电场力做功 |
D.若将一个正点电荷分别放在M、N和O三点,则该点电荷在O点时电势能最大 |
“蹦极”是一项刺激的极限运动,运动员将一端固定的长弹性绳绑在踝关节处,从几十米高处跳下。在某次蹦极中,弹性绳弹力F的大小随时间t的变化图象如图所示,其中t2、t4时刻图线的斜率最大。将蹦极过程近似为在竖直方向的运动,弹性绳中弹力与伸长量的关系遵循胡克定律,空气阻力不计。下列说法正确的是
A.t1~t2时间内运动员处于超重状态 |
B.t2~t4时间内运动员的机械能先减少后增大 |
C.t3时刻运动员的加速度为零 |
D.t4时刻运动员具有向下的最大速度 |
我国已成功实现“神舟8号”飞船与“天宫1号”在太空交会对接。若对接前的某段时间内“神舟8号”和“天宫1号”处在同一圆形轨道上顺时针运行,运行周期约为91min,如图所示。下列说法中正确的是
A.和同步卫星相比,“天宫1号”的向心加速度大 |
B.“天宫1号”在此轨道运行的速度一定大于第一宇宙速度 |
C.“神舟8号”要想追上“天宫1号”实现对接,应先沿运动方向喷气,再沿与运动方向相反的方向喷气 |
D.“神舟8号”要想追上“天宫1号”实现对接,应先沿与运动方向相反的方向喷气,再沿运动方向喷气 |
如图所示,在水平力F作用下,木块A、B保持静止。若木块A与B接触面是水平的,且F≠0。则关于木块B的受力个数可能是
A.3个 B.4个 C.5个 D.6个
如图所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q处以速度v0水平向左抛出一个小球A,小球恰好能垂直落在斜坡上,运动时间为t1.小球B从同一点Q处自由下落,下落至P点的时间为t2.不计空气阻力,则t1∶t2
A.1∶2 | B.1∶ | C.1∶3 | D.1∶ |
某个由导电介质制成的电阻截面如图所示。导电介质的电阻率为ρ、制成内、外半径分别为a和b的半球壳层形状(图中阴影部分),半径为a、电阻不计的球形电极被嵌入导电介质的球心为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极。设该电阻的阻值为R。下面给出R的四个表达式中只有一个是合理的,你可能不会求解R,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,R的合理表达式应为
A.R= | B.R= |
C.R= | D.R= |
测量滑块在运动过程中所受的合外力是“探究动能定理”实验要解决的一个重要问题。为此,某同学设计了如下实验方案:
A.实验装置如图所示,一端系在滑块上的细绳通过光滑的轻质定滑轮挂上钩码,用垫块将长木板固定有定滑轮和打点计时器的一端垫起。
B.将纸带穿过打点计时器并固定在滑块上,调整长木板的倾角,接通打点计时器,轻推滑块,直至滑块沿长木板向下做匀速直线运动;
C.保持长木板的倾角不变,取下细绳和钩码,换上新纸带,接通打点计时器,滑块沿长木板向下做匀加速直线运动。
请回答下列问题:
①判断滑块做匀速直线运动的依据是:打点计时器在纸带上所打出点的分布应该是 ;
②C中滑块在匀加速下滑过程中所受的合外力大小 钩码的重力大小(选填“大于”、“等于”或“小于”)。
某同学准备利用下列器材测量电源电动势和内电阻。
A.干电池两节,每节电动势约为1.5v,内阻约几欧姆 |
B.直流电压表v1、v2,量程均为0-3v,内阻约为3kΩ |
C.定值电阻R0,阻值为5Ω |
D.滑动变阻器R,最大阻值50Ω |
E.导线和开关
(1)该同学连接的实物电路如图甲所示,其中还有一根导线没有连,请补上这根导线。
(2)实验中移动滑动变阻器触头,读出伏特表v1和v2的多组数据U1、U2,描绘出图像如图乙所示,图中直线斜率为k,与横轴的截距为a,则电源的电动势E= ,
内阻为r= (用k、a、R0表示)。
质量为M=1kg足够长的木板放在水平地面上,木板左端放有一质量为m=1kg大小不计的物块,木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.3。开始时物块和木板都静止,现给物块施加一水平向右的恒力F=6N,当物块在木板上滑过1m的距离时,撤去恒力F。(设最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)
(1)求力F做的功;
(2)求整个过程中长木板在地面上滑过的距离。
如图所示,一质量为m、电荷量为q、重力不计的微粒,从倾斜放置的平行电容器I的A板处由静止释放,A、B间电压为U1。微粒经加速后,从D板左边缘进入一水平放置的平行板电容器II,由C板右边缘且平行于极板方向射出,已知电容器II的板长为板间距离的2倍。电容器右侧竖直面MN与PQ之间的足够大空间中存在着水平向右的匀强磁场(图中未画出),MN与PQ之间的距离为L,磁感应强度大小为B。在微粒的运动路径上有一厚度不计的窄塑料板(垂直纸面方向的宽度很小),斜放在MN与PQ之间,=45°。求:
(1)微粒从电容器I加速后的速度大小;
(2)电容器II CD间的电压;
(3)假设粒子与塑料板碰撞后,电量和速度大小不变、方向变化遵循光的反射定律,碰撞时间极短忽略不计,微粒在MN与PQ之间运动的时间和路程。
下列说法中,正确的是( )
A.晶体熔化时吸收热量,分子平均动能一定增加 |
B.布朗运动反映了固体小颗粒内分子的无规则运动 |
C.热量可以从低温物体传给高温物体 |
D.夏天将密闭有空气的矿泉水瓶放进低温的冰箱中会变扁,此过程中瓶内空气内能减小,外界对其做功 |