如图,在正四棱柱 ABCD- A 1 B 1 C 1 D 1 中, AB=2 , A A 1 =4 .点 A 2 , B 2 , C 2 , D 2 分别在棱 A A 1 , B B 1 , C C 1 , D D 1 上, A A 2 =1 , B B 2 =D D 2 =2 , C C 2 =3 .
(1)证明: B 2 C 2 ∥ A 2 D 2 ;
(2)点 P 在棱 B B 1 上,当二面角 P- A 2 C 2 - D 2 为 150° 时,求 B 2 P .
抛物线的顶点是双曲线16x2-9y2=144的中心,而焦点是双曲线的左顶点,求抛物线的方程.
设A(x1,y1)、B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论.(2)当直线l的斜率为2时,求l在y轴上的截距的取值范围.
过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1)、B(x2,y2).(1)求该抛物线上纵坐标为的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.
已知抛物线y2=2px(p>0)过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.(1)求实数a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.
过抛物线y2=4x的准线与对称轴的交点作直线,交抛物线于M、N两点,问直线的倾斜角多大时,以线段MN为直径的圆经过抛物线的焦点?